TRPS1 regulates the opposite effect of progesterone via RANKL in endometrial carcinoma and breast carcinoma

Author:

Yang Linlin,Fan Qiong,Wang Jing,Yang Xiaoming,Yuan Jiangjing,Li Yuhong,Sun Xiao,Wang YudongORCID

Abstract

AbstractMedroxyprogesterone (MPA) has therapeutic effect on endometrial carcinoma (EC), while it could promote the carcinogenesis of breast cancer (BC) by activating receptor activator of NF-kB ligand (RANKL). However, the selective mechanism of MPA in endometrium and breast tissue remains obscure. Multiomics analysis of chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) were performed in cell lines derived from endometrial cancer and mammary tumor to screen the differential co-regulatory factors of progesterone receptor (PR). Dual-luciferase assays and ChIP-PCR assays were used to validate the transcriptional regulation. Co-immunoprecipitation (Co-IP) and immunofluorescence assays were carried out to explore molecular interactions between PR, the cofactor transcriptional repressor GATA binding 1 (TRPS1), and histone deacetylase 2 (HDAC2). Subsequently, human endometrial cancer/breast cancer xenograft models were established to investigate the regulation effect of cofactor TRPS1 in vivo. In the current study, we found that MPA downregulated RANKL expression in a time- and dose-dependent manner in EC, while had the opposite effect on BC. Then PR could recruit cofactor TRPS1 to the promoter of RANKL, leading to histone deacetylation of RANKL to repress its transcription in EC, whereas MPA disassociated the PR/TRPS1/HDAC2 complex to enhance RANKL histone acetylation in BC. Therefore, TRPS1, the coregulator recruited by PR played a critical role in the selective mechanism of progesterone in EC and BC and could become a potential candidate for targeted therapy to improve the anticancer effect of MPA on EC and avoid its carcinogenic effect on BC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3