A blood transcriptome-based analysis of disease progression, immune regulation, and symptoms in coronavirus-infected patients

Author:

Sadanandam AngurajORCID,Bopp Tobias,Dixit Santosh,Knapp David J. H. F.,Emperumal Chitra Priya,Vergidis Paschalis,Rajalingam KrishnarajORCID,Melcher Alan,Kannan NagarajanORCID

Abstract

AbstractCOVID-19 patients show heterogeneity in clinical presentation and outcomes that makes pandemic control and strategy difficult; optimizing management requires a systems biology approach of understanding the disease. Here we sought to potentially understand and infer complex disease progression, immune regulation, and symptoms in patients infected with coronaviruses (35 SARS-CoV and 3 SARS-CoV-2 patients and 57 samples) at two different disease progression stages. Further, we compared coronavirus data with healthy individuals (n = 16) and patients with other infections (n = 144; all publicly available data). We applied inferential statistics (the COVID-engine platform) to RNA profiles (from limited number of samples) derived from peripheral blood mononuclear cells (PBMCs). Compared to healthy individuals, a subset of integrated blood-based gene profiles (signatures) distinguished acute-like (mimicking coronavirus-infected patients with prolonged hospitalization) from recovering-like patients. These signatures also hierarchically represented multiple (at the system level) parameters associated with PBMC including dysregulated cytokines, genes, pathways, networks of pathways/concepts, immune status, and cell types. Proof-of-principle observations included PBMC-based increases in cytokine storm-associatedIL6, enhanced innate immunity (macrophages and neutrophils), and lower adaptive T and B cell immunity in patients with acute-like disease compared to those with recovery-like disease. Patients in the recovery-like stage showed significantly enhancedTNF,IFN-γ, anti-viral,HLA-DQA1, andHLA-Fgene expression and cytolytic activity, and reduced pro-viral gene expression compared to those in the acute-like stage in PBMC. Besides, our analysis revealed overlapping genes associated with potential comorbidities (associated diabetes) and disease-like conditions (associated with thromboembolism, pneumonia, lung disease, and septicemia). Overall, our COVID-engine inferential statistics platform and study involving PBMC-based RNA profiling may help understand complex and variable system-wide responses displayed by coronavirus-infected patients with further validation.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3