Integrated analysis of high-throughput sequencing data reveals the key role of LINC00467 in the invasion and metastasis of testicular germ cell tumors

Author:

Bo Hao,Zhu Fang,Liu Zhizhong,Deng Qi,Liu Guangmin,Li Ruixue,Zhu Wenbing,Tan Yueqiu,Liu Gang,Fan Jingyu,Fan Liqing

Abstract

AbstractLong noncoding RNAs (lncRNAs) are involved in various physiological and pathological processes. However, the role of lncRNAs in testicular germ cell tumor (TGCT) has been rarely reported. Our purpose is to comprehensively survey the expression and function of lncRNAs in TGCT. In this study, we used RNA sequencing to construct the lncRNA expression profiles of 13 TGCT tissues and 4 paraneoplastic tissues to explore the function of lncRNAs in TGCT. The bioinformatics analysis showed that many lncRNAs are differentially expressed in TGCT. GO and KEGG enrichment analyses revealed that the differentially expressed lncRNAs participated in various biological processes associated with tumorigenesis in cis and trans manners. Further, we found that the expression of LINC00467 was positively correlated with the poor prognosis and pathological grade of TGCT using WGCNA analysis and GEPIA database data mining. In vitro experiments revealed that LNC00467 could promote the migration and invasion of TGCT cells by regulating the expression of AKT3 and influencing total AKT phosphorylation. Further analysis of TCGA data revealed that the expression was negatively correlated with the infiltration of immune cells and the response to PD1 immunotherapy. In summary, this study is the first to construct the expression profile of lncRNAs in TGCT. It is also the first study to identify the metastasis-promoting role of LNC00467, which can be used as a potential predictor of TGCT prognosis and immunotherapeutic response to provide a clinical reference for the treatment and diagnosis of TGCT metastasis.

Funder

the National Key Research and Development Program of China

the Special Fund of Clinical Medicine of the Chinese Medical Association

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3