Abstract
AbstractHistone lysine crotonylation (Kcr) is a new acylation modification first discovered in 2011, which has important biological significance for gene expression, cell development, and disease treatment. In the past over ten years, numerous signs of progress have been made in the research on the biochemistry of Kcr modification, especially a series of Kcr modification-related “reader”, “eraser”, and “writer” enzyme systems are identified. The physiological function of crotonylation and its correlation with development, heredity, and spermatogenesis have been paid more and more attention. However, the development of disease is usually associated with abnormal Kcr modification. In this review, we summarized the identification of crotonylation modification, Kcr-related enzyme system, biological functions, and diseases caused by abnormal Kcr. This knowledge supplies a theoretical basis for further exploring the function of crotonylation in the future.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146:1016–28.
2. Zhao S, Zhang X, Li H. Beyond histone acetylation-writing and erasing histone acylations. Curr Opin Struct Biol. 2018;53:169–77.
3. Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18:90–101.
4. Zhang G, Annan RS, Carr SA, Neubert TA. Overview of peptide and protein analysis by mass spectrometry. Curr Protoc Protein Sci. 2010;Chapter 16:Unit16.11.
5. Chen Y, Chen W, Cobb MH, Zhao Y. PTMap-a sequence alignment software for unrestricted, accurate, and full-spectrum identification of post-translational modification sites. Proc Natl Acad Sci USA. 2009;106:761–6.