NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence

Author:

Zhen Shuman,Jia Yunlong,Zhao Yan,Wang Jiali,Zheng Boyang,Liu Tianxu,Duan Yuqing,Lv Wei,Wang Jiaqi,Xu Fan,Liu YuepingORCID,Zhang YiORCID,Liu LihuaORCID

Abstract

AbstractGefitinib is one of the most extensively utilized epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) for treating advanced lung adenocarcinoma (LUAD) patients harboring EGFR mutation. However, the emergence of drug resistance significantly compromised the clinical efficacy of EGFR-TKIs. Gaining further insights into the molecular mechanisms underlying gefitinib resistance holds promise for developing novel strategies to overcome the resistance and improve the prognosis in LUAD patients. Here, we identified that the inhibitory efficacy of gefitinib on EGFR-mutated LUAD cells was partially dependent on the induction of ferroptosis, and ferroptosis protection resulted in gefitinib resistance. Among the ferroptosis suppressors, aldo-keto reductase family 1 member C1 (AKR1C1) exhibited significant upregulation in gefitinib-resistant strains of LUAD cells and predicted poor progression-free survival (PFS) and overall survival (OS) of LUAD patients who received first-generation EGFR-TKI treatment. Knockdown of AKR1C1 partially reversed drug resistance by re-sensitizing the LUAD cells to gefitinib-mediated ferroptosis. The decreased expression of miR-338-3p contributed to the aberrant upregulation of AKR1C1 in gefitinib-resistant LUAD cells. Furthermore, upregulated long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1_1 (NEAT1_1) sponged miR-338-3p to neutralize its suppression on AKR1C1. Dual-luciferase reporter assay and miRNA rescue experiment confirmed the NEAT1_1/miR-338-3p/AKR1C1 axis in EGFR-mutated LUAD cells. Gain- and loss-of-function assays demonstrated that the NEAT1_1/miR-338-3p/AKR1C1 axis promoted gefitinib resistance, proliferation, migration, and invasion in LUAD cells. This study reveals the effects of NEAT1_1/miR-338-3p/AKR1C1 axis-mediated ferroptosis defence in gefitinib resistance in LUAD. Thus, targeting NEAT1_1/miR-338-3p/AKR1C1 axis might be a novel strategy for overcoming gefitinib resistance in LUAD harboring EGFR mutation.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3