Abstract
AbstractHigh levels of homocysteine (Hcy) associated with cardiovascular events are accompanied by increased copper (Cu) concentrations in the blood. Hcy has been shown to promote endothelial dysfunction, whereas the effect of Hcy on cardiomyocytes and the role of Cu in the pathogenesis remain less understood. In the present study, it is demonstrated that the combination of Hcy and Cu2+-induced apoptosis and autosis of cardiomyocytes simultaneously, and thus led to cardiac dysfunction in hyperhomocysteinemic rats. These effects were associated with p22phox activation and NADPH oxidase (NOX)-mediated p62 upregulation. Inhibition of the expression of p22phox or p62 in cardiomyocytes significantly attenuated Hcy and Cu2+-mediated reactive oxygen species (ROS) generation and cell death. Furthermore, interrupting the NOX–p62 axis prevented diastolic dysfunction in hyperhomocysteinemic rats (HcyR). These findings establish that the induction of apoptosis and autosis of cardiomyocytes through stimulating the NOX–p62-signaling pathway constitutes a novel mechanism of Hcy and Cu-induced cardiac dysfunction.
Funder
National Natural Science Foundation of China
Jiangxi Provincial Department of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献