Abstract
AbstractBy responding to a host of adverse conditions, ranging from DNA damage to viral infection, transcription factor p53 supports genomic stability, cellular health, and survival. Not surprisingly, tumours across the cancer spectrum carry mutations in p53, misexpress the protein, or dysregulate its activity. Several signalling pathways, many of which comprise oncogenic proteins, converge upon p53 to control its stability and activity. We here present the conserved kinase/ATPase RioK1 as an upstream factor that determines p53 activity at the DNA, RNA, and protein levels. It achieves this task by integrating the regulatory events that act on p53 into a coherent response circuit. We will also discuss how RIOK1 overexpression represents an alternative mechanism for cancers to inactivate p53, and how targeting RioK1 could eradicate malignancies that are driven by a dysregulated RioK1-p53 network.
Funder
Associazione Italiana per la Ricerca sul Cancro
Euregio Science Fund grant IPN124.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献