Methyltransferase METTL3 governs the modulation of SH3BGR expression through m6A methylation modification, imparting influence on apoptosis in the context of Down syndrome-associated cardiac development

Author:

Shi WeiliORCID,Chen Rui,Zhou Mingjie,Li Yunian,Zhang Yuwei,Wang JikuiORCID,Hao Bingtao,Liao ShixiuORCID

Abstract

AbstractDown syndrome (DS), caused by an additional chromosome 21, has a high risk of congenital heart defects (CHD), one of the primary causes of mortality in DS newborns. To elucidate the pathogenetic mechanisms underlying this condition, we explored the role of RNA m6A methylation, regulated by METTL3, in DS cardiac development and its impact on the expression of SH3BGR, a gene located at Down syndrome congenital heart disease (DS-CHD) minimal region. We analyzed DS fetal cardiac tissues to assess RNA m6A methylation levels and identify potential contributors. RNA sequencing was performed to detect differentially expressed genes in the same tissues. To further understand METTL3’s function in heart development, we inactivated Mettl3 in the developing mouse heart to mimic the significantly reduced METTL3 observed in DS cardiac development. Additionally, human cardiomyocyte AC16 cells were used to investigate the molecular mechanism by which METTL3 regulates SH3BGR expression. Apoptosis was analyzed to evaluate METTL3’s effect on heart development through SH3BGR regulation. Reduced m6A modification and decreased METTL3 expression were observed in human DS fetal hearts, along with a significant increase of SH3BGR expression. METTL3, through m6A modification, was found to regulate SH3BGR expression, by influencing mRNA stability. METTL3-deficient mouse embryos exhibited heart malformation with increased apoptosis, emphasizing its role in heart development. In DS hearts, METTL3 downregulation and SH3BGR upregulation, potentially orchestrated by abnormal m6A modification, contribute to gene dysregulation and apoptosis. This study reveals novel insights into DS cardiac pathology, highlighting the intricate role of METTL3 in DS congenital heart defects and presenting the m6A modification of SH3BGR as a potential therapeutic target.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3