Author:
Chen Ye,Wen Jiyue,Chen Zhiwu
Abstract
AbstractInhibition of RhoA-ROCK pathway is involved in the H2S-induced cerebral vasodilatation and H2S-mediated protection on endothelial cells against oxygen-glucose deprivation/reoxygenation injury. However, the inhibitory mechanism of H2S on RhoA-ROCK pathway is still unclear. The aim of this study was to investigate the target and mechanism of H2S in inhibition of RhoA/ROCK. GST-RhoAwild and GST-RhoAS188A proteins were constructed and expressed, and were used for phosphorylation assay in vitro. Recombinant RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids were constructed and transfected into primary hippocampal nerve cells (HNCs) to evaluate the neuroprotective mechanism of endothelial H2S by using transwell co-culture system with endothelial cells from cystathionine-γ-lyase knockout (CSE−/−) mice and 3-mercaptopyruvate sulfurtransferase knockout (3-MST−/−) rats, respectively. We found that NaHS, exogenous H2S donor, promoted RhoA phosphorylation at Ser188 in the presence of cGMP-dependent protein kinase 1 (PKG1) in vitro. Besides, both exogenous and endothelial H2S facilitated the RhoA phosphorylation at Ser188 in HNCs, which induced the reduction of RhoA activity and membrane transposition, as well as ROCK2 activity and expression. To further investigate the role of endothelial H2S on RhoA phosphorylation, we detected H2S release from ECs of CSE+/+ and CSE−/− mice, and 3-MST+/+ and 3-MST−/− rats, respectively, and found that H2S produced by ECs in the culture medium is mainly catalyzed by CSE synthase. Moreover, we revealed that both endothelial H2S, mainly catalyzed by CSE, and exogenous H2S protected the HNCs against hypoxia-reoxygenation injury via phosphorylating RhoA at Ser188.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Reference56 articles.
1. Stinear, C. M., Lang, C. E., Zeiler, S. & Byblow, W. D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 19, 348–360 (2020).
2. Guan, X. et al. The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 235, 116795 (2019).
3. Han, X. R. et al. Protective effects of microRNA-431 against cerebral ischemia-reperfusion injury in rats by targeting the Rho/Rho-kinase signaling pathway. J. Cell Physiol. 233, 5895–5907 (2018).
4. Yang, Y. et al. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARgamma/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int. J. Clin. Exp. Pathol. 8, 2484–2494 (2015).
5. Cai, W. et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: an aging effect. Ageing Res. Rev. 34, 77–87 (2017).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献