Extracellular vesicles microRNA-592 of melanoma stem cells promotes metastasis through activation of MAPK/ERK signaling pathway by targeting PTPN7 in non-stemness melanoma cells

Author:

Zhang Yuhan,Chen Yan,Shi Lei,Li Jie,Wan Wenjuan,Li Bowen,Liu Doudou,Li Xiaoshuang,Chen Yuting,Xiang Meng,Chen Hao,Zeng Bin,Xing H. Rosie,Wang JianyuORCID

Abstract

AbstractMelanoma, one of the most aggressive malignancies, its high mortality and low survival rates are associated with effective metastatic colonization. Melanoma metastasis hinges on the bidirectional cell-cell communication within the complex metastatic microenvironments (MME). Extracellular vesicles (EVs) are recognized as a new class of molecular mediator in MME programing. Published studies show that melanoma EVs can educate MME stromal cells to acquire the pro-metastatic phenotype to enhance metastatic colonization. Whether EVs can mediate the interactions between heterogenous cancer cells within the MME that alter the course of metastasis has not been investigated at the mechanistic level. In this study, melanoma parental cells (MPCs) and paired derivative cancer stem cell line melanoma stem cells (MSCs) that were derived from melanoma cell line M14 were used. We demonstrate that the EVs-mediated crosstalk between the MSCs and the MPCs is a novel mechanism for melanoma metastasis. We characterized miR-592, a relatively novel microRNA of prognostic potential, in mediation of such intercellular crosstalk. EVs can encapsulate and deliver miR-592 to target MPCs. Upon entering, miR-592 inhibits the expression of its gene target protein tyrosine phosphatase non-receptor type7 (PTPN7), a phosphatase targeting MAPKs. This leads to the relief of the inhibitory effect of PTPN7 on MAPK/ERK signaling and consequently the augmentation of metastatic colonization of MPCs. Thus, via the extracellular vesicle miR-592/PTPN7/MAPK axis, melanoma-CSCs can transfer their metastatic ability to the low-metastatic non-CSC melanoma cells.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3