Abstract
AbstractPleckstrin homology domain-containing family M member 2 (PLEKHM2) is an essential adaptor for lysosomal trafficking and its homozygous truncation have been reported to cause early onset dilated cardiomyopathy (DCM). However, the molecular mechanism of PLEKHM2 deficiency in DCM pathogenesis and progression is poorly understood. Here, we generated an in vitro model of PLEKHM2 knockout (KO) induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to elucidate the potential pathogenic mechanism of PLEKHM2-deficient cardiomyopathy. PLEKHM2-KO hiPSC-CMs developed disease phenotypes with reduced contractility and impaired calcium handling. Subsequent RNA sequencing (RNA-seq) analysis revealed altered expression of genes involved in mitochondrial function, autophagy and apoptosis in PLEKHM2-KO hiPSC-CMs. Further molecular experiments confirmed PLEKHM2 deficiency impaired autophagy and resulted in accumulation of damaged mitochondria, which triggered increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential (Δψm). Importantly, the elevated ROS levels caused oxidative stress-induced damage to nearby healthy mitochondria, resulting in extensive Δψm destabilization, and ultimately leading to impaired mitochondrial function and myocardial contractility. Moreover, ROS inhibition attenuated oxidative stress-induced mitochondrial damage, thereby partially rescued PLEKHM2 deficiency-induced disease phenotypes. Remarkably, PLEKHM2-WT overexpression restored autophagic flux and rescued mitochondrial function and myocardial contractility in PLEKHM2-KO hiPSC-CMs. Taken together, these results suggested that impaired mitochondrial clearance and increased ROS levels play important roles in PLEKHM2-deficient cardiomyopathy, and PLEKHM2-WT overexpression can improve mitochondrial function and rescue PLEKHM2-deficient cardiomyopathy.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献