Terminal differentiation of human granulosa cells as luteinization is reversed by activin-A through silencing of Jnk pathway

Author:

Bildik Gamze,Akin Nazli,Esmaeilian Yashar,Hela Francesko,Yildiz Ceren Sultan,Iltumur Ece,İncir Said,Karahuseyinoglu Sercin,Yakin Kayhan,Oktem OzgurORCID

Abstract

AbstractMolecular mechanisms underlying luteinization (terminal differentiation of granulosa and theca cells after ovulation) and luteolysis (demise of corpus luteum) are poorly understood in human ovary. Here we report that activin-A, after binding to its cognate receptors induces a functional luteolytic state and reverses luteinization phenotype by downregulating the expression of the steroidogenic enzymes, LH receptor and VEGF and reducing estradiol (E2) progesterone (P4) production and upregulating FSH receptor and cyclin D1 expression in human primary luteinized granulosa cells. Further, this action of activin-A involves downregulation of JNK signaling pathway and is opposite to that of human chorionic gonadotropin (hCG), which acts as a luteotropic hormone and improves luteal function through the activation of JNK pathway in the same cell type. Reversal of luteinization phenotype in luteal granulosa cells by activin-A potentially makes this hormone an attractive candidate for use under certain clinical situations, where induction of luteolysis and rapid reduction of endogenous sex steroid levels are beneficial such as ovarian hyperstimulation syndrome (OHSS), in which the ovaries hyper-respond to gonadotropin stimulation by producing too many growing follicles along with development of ascites, pleural effusion, and hemo-concentrations as a result of increased vascular permeability and leakage of intravascular volume into third spaces. Our work unveils a previously undefined role for activin-A and JNK signaling pathway in human corpus luteum biology, that might have a direct clinical impact in assisted reproductive technologies.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3