SNORD6 promotes cervical cancer progression by accelerating E6-mediated p53 degradation

Author:

Li Qianhui,Xie Bumin,Chen Xi,Lu Bingfeng,Chen ShuoORCID,Sheng Xiujie,Zhao YangORCID

Abstract

AbstractSmall nucleolar RNAs (snoRNAs) are a class of non-coding RNAs widely distributed in eukaryotic nucleoli. In recent years, studies have revealed that snoRNAs can also participate in the occurrence and development of malignant tumors through different pathways. Cervical cancer is one of the most common malignant tumors of the female reproductive system, and the high-risk HPV virus infection is its main pathogenic mechanism. However, the outcomes in different patients with malignant tumors vary, indicating that other factors might affect the pathogenic process of cervical cancer. In this study, we screened the poor prognosis indicator SNORD6 from the TCGA database to find the snoRNA that affects the disease outcome during the pathogenesis of cervical cancer. We discovered that SNORD6 expression in cervical cancer tissues was higher than that in normal cervical tissues. Cell phenotype experiments revealed that the knockdown of SNORD6 retarded cell proliferation and plate clone formation. Furthermore, G1-S phase cell cycle arrest was induced, DNA synthesis was decreased, cell migration and invasion were reduced, while the level of apoptosis increased, whereas the opposite results were obtained after SNORD6 overexpression. Moreover, after intratumoral injection of ASO-SNORD6, the tumor growth rate slowed down, and the tumor volume decreased compared with the control group. In the mechanism study, we found that SNORD6 concurrently acted as a binding “hub” to promote the formation of the tumor suppressor protein p53 degradation complex E6-E6AP-p53. This reaction enhanced the ubiquitination and degradation of p53, thus influenced the regulation of p53 activities in the cell cycle and apoptosis. This study preliminarily clarified the biological role and specific mechanism of SNORD6 in the occurrence of cervical cancer, broadening the basic theoretical research of ovarian cancer and may provide a new perspective on the diagnosis and treatment of cervical cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3