MicroRNA-375 restrains the progression of lung squamous cell carcinoma by modulating the ERK pathway via UBE3A-mediated DUSP1 degradation

Author:

Gan Junqing,Zhang Yu,Liu Shan,Mu Guannan,Zhao Juan,Jiang Wei,Li Jiade,Li Qi,Wu Yangjiazi,Wang Xinling,Che Dehai,Li Xiaomei,Huang Xiaoyi,Meng QingweiORCID

Abstract

AbstractMiRNA-375 has been reported to play critical roles in a variety of cancers. To unravel its biological roles, especially its specific mechanisms of action in lung squamous cell carcinoma (LUSC), LUSC tissue microarrays and miRNAscope were performed to identify the miR-375 expression. Associations with clinicopathologic features, survival, and the prognostic value of miR-375 in LUSC were clarified in a retrospective study of 90 pairs of LUSC tissues. In vitro and in vivo gain- and loss-of-function assays were conducted to validate the effects and mechanism of miR-375 in LUSC. The mechanism responsible for interactions was verified by dual-luciferase reporter gene assay, immunoprecipitation (IP) analysis, immunofluorescence (IF) assay and ubiquitination assay. We found that miR-375 had higher expression in noncancerous adjacent tissues than in LUSC tissues. Clinicopathologic analyses showed that miR-375 expression was correlated with pathologic stage and was an independent predictor of overall survival (OS) for LUSC. MiR-375, as a tumor inhibitor, inhibited proliferation and metastasis while promoting apoptosis of LUSC cells. Mechanistic research indicated that miR-375 targeted ubiquitin-protein ligase E3A (UBE3A), which in turn promoted the activity of the ERK signaling pathway via ubiquitin-mediated dual-specificity protein phosphatase 1 (DUSP1) degradation. Collectively, we propose a novel mechanism of tumorigenesis and metastasis of LUSC via the miR-375/UBE3A/DUSP1/ERK axis, which could potentially facilitate new strategies for the treatment of LUSC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3