LINC00858 promotes colon cancer progression through activation of STAT3/5 signaling by recruiting transcription factor RAD21 to upregulate PCNP

Author:

Xu TingORCID,Wu Kun,Shi Jin,Ji Lindong,Song Xudong,Tao GuoquanORCID,Zheng Shutao,Zhang Li,Jiang BaofeiORCID

Abstract

AbstractThe purpose of our investigation is to explore the putative molecular mechanisms underpinning LINC00858 involvement in colon cancer. The expression of LINC00858 in TCGA data was identified using the GEPIA website. Colon cancer cancerous tissues were clinically collected. The expression of LINC00858, RAD21, and PCNP in colon tissues or cells was determined using RT-qPCR. The interactions among LINC00858, RAD21, and PCNP promoter region were determined by means of RNA pull down, RIP, and ChIP assays. Cell proliferative, apoptotic, invasive, and migrated capabilities were evaluated. Western blot was conducted to determine RAD21, PCNP, phosphorylated (p)-STAT3, STAT3, p-STAT5 and STAT5 and apoptosis related proteins. A nude mouse model of colon cancer was constructed and tumorigenesis of colon cancer cells was observed. LINC00858 was upregulated in cancerous tissues and cells. LINC00858 recruited the transcription factor RAD21. Overexpression of LINC00858 promoted the binding of RAD21 and PCNP promoter region, which increased the expression of PCNP. Silencing of RAD21 or PCNP reversed the promoting effect of LINC00858 on the disease initiation and development. PCNP silencing inhibited proliferative ability and promoted apoptotic ability of cancerous cells via STAT3/5 inhibition, which was reversed by colivelin-activated STAT3. In vivo experiments further verified that LINC00858 enhanced the tumorigenicity of colon cancer cells in vivo by regulating the RAD21/PCNP/STAT3/5 axis. It indicated the promoting role of LINC00858 in colon cancer progression though activating PCNP-mediated STAT3/5 pathway by recruiting RAD21.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3