The monosialoganglioside GM1a protects against complement attack

Author:

Wedekind Henri,Beimdiek JuliaORCID,Rossdam Charlotte,Kats Elina,Wittek Vanessa,Schumann LisaORCID,Sörensen-Zender Inga,Fenske Arno,Weinhold Birgit,Schmitt RolandORCID,Tiede Andreas,Büttner Falk F. R.ORCID,Münster-Kühnel AnjaORCID,Abeln MarkusORCID

Abstract

AbstractThe complement system is a part of the innate immune system in the fluid phase and efficiently eliminates pathogens. However, its activation requires tight regulation on the host cell surface in order not to compromise cellular viability. Previously, we showed that loss of placental cell surface sialylation in mice in vivo leads to a maternal complement attack at the fetal-maternal interface, ultimately resulting in loss of pregnancy. To gain insight into the regulatory function of sialylation in complement activation, we here generated trophoblast stem cells (TSC) devoid of sialylation, which also revealed complement sensitivity and cell death in vitro. Glycolipid-analysis by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection (xCGE-LIF) allowed us to identify the monosialoganglioside GM1a as a key element of cell surface complement regulation. Exogenously administered GM1a integrated into the plasma membrane of trophoblasts, substantially increased binding of complement factor H (FH) and was sufficient to protect the cells from complement attack and cell death. GM1a treatment also rescued human endothelial cells and erythrocytes from complement attack in a concentration dependent manner. Furthermore, GM1a significantly reduced complement mediated hemolysis of erythrocytes from a patient with Paroxysmal nocturnal hemoglobinuria (PNH). This study demonstrates the complement regulatory potential of exogenously administered gangliosides and paves the way for sialoglycotherapeutics as a novel substance class for membrane-targeted complement regulators.

Funder

Deutsche Forschungsgemeinschaft

Studienstiftung des Deutschen Volkes

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3