Abstract
AbstractThe proliferation and differentiation of hepatic progenitor cells (HPCs) drive the homeostatic renewal of the liver under diverse conditions. Liver regeneration is associated with an increase in Axin2+Cnr1+ HPCs, along with a marked increase in the levels of the endocannabinoid anandamide (AEA). But the molecular mechanism linking AEA signaling to HPC proliferation and/or differentiation has not been explored. Here, we show that in vitro exposure of HPCs to AEA triggers both cell cycling and differentiation along with increased expression of Cnr1, Krt19, and Axin2. Mechanistically, we found that AEA promotes the nuclear localization of the transcription factor β-catenin, with subsequent induction of its downstream targets. Systemic analyses of cells after CRISPR-mediated knockout of the β-catenin-regulated transcriptome revealed that AEA modulates β-catenin-dependent cell cycling and differentiation, as well as interleukin pathways. Further, we found that AEA promotes OXPHOS in HPCs when amino acids and glucose are readily available as substrates, but AEA inhibits it when the cells rely primarily on fatty acid oxidation. Thus, the endocannabinoid system promotes hepatocyte renewal and maturation by stimulating the proliferation of Axin2+Cnr1+ HPCs via the β-catenin pathways while modulating the metabolic activity of their precursor cells.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献