sTim-3 alleviates liver injury via regulation of the immunity microenvironment and autophagy

Author:

Yang Ying,Ying Gaoxiang,Wu Fengtian,Chen Zhi

Abstract

AbstractLiver failure (LF) is a monocyte/macrophage-mediated liver injury that has been associated with inflammatory mediators. However, the mechanism through which monocytes/macrophages regulate LF has not been fully elucidated. In this study, we investigated the role of soluble T-cell immunoglobulin domain and mucin domain-containing molecule-3 (sTim-3) in inhibition of release of inflammatory mediators. We further assess this role in protection against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver failure (ALF), via monocyte/macrophage regulation and autophagy induction in mice. Our findings indicate significantly higher plasma sTim-3 in acute-on-chronic liver failure (ACLF) group relative to other groups, with this trend associated with disease progression. Furthermore, infiltrated recombinant sTim-3 inhibited release of various inflammatory mediators, including cytokines and human high-mobility group box-1 (HMGB1), potentially via autophagy induction. Furthermore, H&E staining and the low levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in ALF mice, supported that recombinant sTim-3 effectively alleviated liver injury. Moreover, sTim-3 induced changes in monocyte/macrophage population in mice’s liver or blood, which consequently caused a reduction in proinflammatory CD11bhiF4/80lo monocyte-derived macrophages and Ly-6C(+)CD11b(+) monocytes. Conversely, sTim-3 increased autophagy levels of hepatic CD11b(+) monocyte-derived macrophages and decreased apoptosis rate of CD11b (+) monocytes in the blood. Collectively, our findings demonstrated that sTim-3 alleviated inflammatory response and liver injury by promoting autophagy and regulating monocyte/macrophage function. This indicates its potential for future development of novel therapeutic strategies against LF.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3