Soluble FAS ligand is not required for pancreatic islet inflammation or beta-cell destruction in non-obese diabetic mice

Author:

Trivedi Prerak M.,Fynch Stacey,Kennedy Lucy M.,Chee JonathanORCID,Krishnamurthy Balasubramanian,O’Reilly Lorraine A.,Strasser Andreas,Kay Thomas W. H.,Thomas Helen E.

Abstract

Abstract CD8+ T cells play a central role in beta-cell destruction in type 1 diabetes. CD8+ T cells use two main effector pathways to kill target cells, perforin plus granzymes and FAS ligand (FASL). We and others have established that in non-obese diabetic (NOD) mice, perforin is the dominant effector molecule by which autoreactive CD8+ T cells kill beta cells. However, blocking FASL pharmacologically was shown to protect NOD mice from diabetes, indicating that FASL may have some role. FASL can engage with its receptor FAS on target cells either as membrane bound or soluble FASL. It has been shown that membrane-bound FASL is required to stimulate FAS-induced apoptosis in target cells, whereas excessive soluble FASL can induce NF-κB-dependent gene expression and inflammation. Because islet inflammation is a feature of autoimmune diabetes, we tested whether soluble FASL could be important in disease pathogenesis independent of its cell death function. We generated NOD mice deficient in soluble FASL, while maintaining expression of membrane-bound FASL due to a mutation in the FASL sequence required for cleavage by metalloproteinase. NOD mice lacking soluble FASL had normal numbers of lymphocytes in their spleen and thymus. Soluble FASL deficient NOD mice had similar islet inflammation as wild-type NOD mice and were not protected from diabetes. Our data indicate that soluble FASL is not required in development of autoimmune diabetes.

Funder

Department of Health | National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3