A novel circular RNA, circMAML3, promotes tumor progression of prostate cancer by regulating miR-665/MAPK8IP2 axis

Author:

Zhenhao Zeng,Ru Chen,Xiaofeng Cheng,Heng Yang,Gongxian WangORCID

Abstract

AbstractMany studies have now demonstrated that circRNAs are aberrantly expressed in cancer and are involved in the regulation of malignant tumor progression. However, the role of circMAML3 (hsa_circ_0125392) in prostate cancer has not been reported. circMAML3 was selected from public data through screening. The circMAML3 circular characterization was performed using Sanger sequencing, agarose gel electrophoresis assay, RNase R assay and actinomycin D assay. The expression of circMAML3 in prostate cancer tissues and cells was detected by qRT-PCR. In vivo and in vitro experiments were conducted to investigate the biological functions of circMAML3 in prostate cancer. Finally, the underlying mechanism of circMAML3 was revealed by qRT-PCR, luciferase reporter assay, miRNA Pulldown, RNA immunoprecipitation, western blotting, and rescue assay. Compared to normal prostate tissue and prostate epithelial cells, circMAML3 is highly expressed in prostate cancer tissues and cell lines. CircMAML3 overexpression promotes prostate cancer proliferation and metastasis, while knockdown of circMAML3 exerts the opposite effect. Mechanistically, circMAML3 promotes prostate cancer progression by upregulating MAPK8IP2 expression through sponge miR-665. Our research indicates that circMAML3 promotes prostate cancer progression through the circMAML3/miR-665/MAPK8IP2 axis. circMAML3 and MAPK8IP2 are upregulated in prostate cancer expression and play an oncogenic role, whereas miR-665 is downregulated in prostate cancer and plays an oncogenic role. Therefore, CircMAML3 may be a potential biomarker for prostate cancer diagnosis, treatment and prognosis.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3