Abstract
AbstractAge-related macular degeneration (AMD) is the most common blinding disease in the elderly population. However, there are still many uncertainties regarding the pathophysiology at the molecular level. Currently, impaired energy metabolism in retinal pigment epithelium (RPE) cells is discussed as one major hallmark of early AMD pathophysiology. Hypoxia-inducible factors (HIFs) are important modulators of mitochondrial function. Moreover, smoking is the most important modifiable risk factor for AMD and is known to impair mitochondrial integrity. Therefore, our aim was to establish a cell-based assay that enables us to investigate how smoking affects mitochondrial function in conjunction with HIF signaling in RPE cells. For this purpose, we treated a human RPE cell line with cigarette smoke extract (CSE) under normoxia (21% O2), hypoxia (1% O2), or by co-treatment with Roxadustat, a clinically approved HIF stabilizer. CSE treatment impaired mitochondrial integrity, involving increased mitochondrial reactive oxygen species, disruption of mitochondrial membrane potential, and altered mitochondrial morphology. Treatment effects on cell metabolism were analyzed using a Seahorse Bioanalyzer. Mitochondrial respiration and ATP production were impaired in CSE-treated cells under normoxia. Surprisingly, CSE-treated RPE cells also exhibited decreased glycolytic rate under normoxia, causing a bioenergetic crisis, because two major metabolic pathways that provide ATP were impaired by CSE. Downregulation of glycolytic rate was HIF-dependent because HIF-1α, the α-subunit of HIF-1, was downregulated by CSE on the protein level, especially under normoxia. Moreover, hypoxia incubation and treatment with Roxadustat restored glycolytic flux. Taken together, our in vitro model provides interesting insights into HIF-dependent regulation of glycolysis under normoxic conditions, which will enable us to investigate signaling pathways involved in RPE metabolism in health and disease.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献