Cigarette smoke causes a bioenergetic crisis in RPE cells involving the downregulation of HIF-1α under normoxia

Author:

Henning YoshiyukiORCID,Willbrand Katrin,Larafa SafaORCID,Weißenberg Gesa,Matschke Veronika,Theiss Carsten,Görtz Gina-Eva,Matschke JohannORCID

Abstract

AbstractAge-related macular degeneration (AMD) is the most common blinding disease in the elderly population. However, there are still many uncertainties regarding the pathophysiology at the molecular level. Currently, impaired energy metabolism in retinal pigment epithelium (RPE) cells is discussed as one major hallmark of early AMD pathophysiology. Hypoxia-inducible factors (HIFs) are important modulators of mitochondrial function. Moreover, smoking is the most important modifiable risk factor for AMD and is known to impair mitochondrial integrity. Therefore, our aim was to establish a cell-based assay that enables us to investigate how smoking affects mitochondrial function in conjunction with HIF signaling in RPE cells. For this purpose, we treated a human RPE cell line with cigarette smoke extract (CSE) under normoxia (21% O2), hypoxia (1% O2), or by co-treatment with Roxadustat, a clinically approved HIF stabilizer. CSE treatment impaired mitochondrial integrity, involving increased mitochondrial reactive oxygen species, disruption of mitochondrial membrane potential, and altered mitochondrial morphology. Treatment effects on cell metabolism were analyzed using a Seahorse Bioanalyzer. Mitochondrial respiration and ATP production were impaired in CSE-treated cells under normoxia. Surprisingly, CSE-treated RPE cells also exhibited decreased glycolytic rate under normoxia, causing a bioenergetic crisis, because two major metabolic pathways that provide ATP were impaired by CSE. Downregulation of glycolytic rate was HIF-dependent because HIF-1α, the α-subunit of HIF-1, was downregulated by CSE on the protein level, especially under normoxia. Moreover, hypoxia incubation and treatment with Roxadustat restored glycolytic flux. Taken together, our in vitro model provides interesting insights into HIF-dependent regulation of glycolysis under normoxic conditions, which will enable us to investigate signaling pathways involved in RPE metabolism in health and disease.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3