SOSSB1 and SOSSB2 mutually regulate protein stability through competitive binding of SOSSA

Author:

Zhang Qi,Hao Rongjiao,Chen HongxiaORCID,Zhou GangqiaoORCID

Abstract

AbstractHuman single-stranded DNA-binding protein homologs hSSB1 (SOSSB1) and hSSB2 (SOSSB2) make a vital impact on maintaining genome stability as the B subunits of the sensor of single-stranded DNA complex (SOSS). However, whether and how SOSSB1 and SOSSB2 modulate mutual expression is unclear. This study, demonstrated that the depletion of SOSSB1 in cells enhances the stability of the SOSSB2 protein, and conversely, SOSSB2 depletion enhances the stability of the SOSSB1 protein. The levels of SOSSB1 and SOSSB2 proteins are mutually regulated through their competitive binding with SOSSA which associates with the highly conservative OB-fold domain in SOSSB1 and SOSSB2. The destabilized SOSSB1 and SOSSB2 proteins can be degraded via the proteasome pathway. Additionally, the simultaneous loss of SOSSB1 and SOSSB2 aggravates homologous recombination (HR)-mediated DNA repair defects, enhances cellular radiosensitivity and promotes cell apoptosis. In conclusion, in this study, we showed that SOSSB1 and SOSSB2 positively regulate HR repair and the interaction between SOSSA and SOSSB1 or SOSSB2 prevents the degradation of SOSSB1 and SOSSB2 proteins via the proteasome pathway.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3