GSDME-dependent pyroptosis signaling pathway in diabetic nephropathy

Author:

Li Shengyu,Feng Lifeng,Li Guangru,Liu Ruiqing,Ma Changzhen,Wang Lin,Gao Aijiao,Liu Chang,Cui Yujie,Jiang Zecheng,Xie Yuhang,Wu Qiang,Wang Xia,Yang Liang,Qi Zhi,Shen YannaORCID

Abstract

AbstractDiabetic nephropathy (DN) is one of the serious chronic microvascular complications of diabetes, and leads to the increased morbidity and mortality in diabetic patients. Gasdermin E (GSDME)-dependent pyroptosis signaling pathway plays important roles in a variety of physiological and pathological processes. However, its role and mechanism in DN are still unclear. In this study, we established a rat DN model by intraperitoneal injection of streptozotocin (STZ) successfully. Structural and functional disorders in the kidney were exhibited on the 12th week after STZ injection; the expressions of caspase-3 and GSDME at protein level in renal cortex were significantly up-regulated. At the 20th week, GSDME-N increased significantly, accompanied by the upregulation of caspase-1 in renal cortex and the release of mature IL-1β (mIL-1β) in serum. Furthermore, we found the protein levels of GSDME, caspase-3, caspase-1 and IL-1β were all increased in HK2 and HBZY-1 cells under high-glucose conditions. We also found that the expression of GSDME-N significantly decreased when caspase-3 was knockdown. In contrast, knockdown of GSDME has no effect on caspase-3. Interestingly, either caspase-3, caspase-1 or GSDME knockdown reduced the release of mIL-1β. Finally, injection of adeno-associated virus (AAV) 9-shGSDME into the rat kidney reduced kidney damage and renal cell pyroptosis in comparison with wild-type diabetic rats. These results indicated that the activation of caspase-1 induced IL-1β maturation, and the activation of caspase-3 mediated cleavage of GSDME responsible for the formation of plasma membrane pore, followed by cytoplasmic release of mIL-1β. Overall, we identified a pro-pyroptosis role for GSDME in DN, which does provide an important basis for clinical therapeutic studies.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3