Abstract
AbstractHypoxic preconditioning (HPC) has been shown to improve organ tolerance to subsequent severe hypoxia or ischemia. However, its impact on intestinal ischemic injury has not been well studied. In this study, we evaluated the effects of HPC on intestinal ischemia in rats. Intestinal rehabilitation, levels of fatty acid oxidation (FAO) by-products, intestinal stem cells (ISCs), levels of hypoxia-inducible factor 1 subunit α (HIF-1α) and its downstream genes such as peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyltransferase 1a (CPT1A) were assessed at distinct time intervals following intestinal ischemia with or without the interference of HIF-1α. Our data showed that HPC facilitates the restoration of the intestinal structure and enhances the FAO, by boosting intestinal stem cells. Additionally, HIF-1α, PPARα, and CPT1A mRNA and their protein levels were generally up-regulated in the small intestine of HPC rats as compared to the control group. Our vitro experiment also shows low-oxygen induces highly levels of HIF-1α and its downstream genes, with a concurrent increase in FAO products in IEC-6 cells. Furthermore, the above phenomenon could be reversed by silencing HIF-1α. In conclusion, we hypothesize that HPC can stimulate the activation of intestinal stem cells via HIF-1α/PPARα pathway-mediated FAO, thereby accelerating the healing process post ischemic intestinal injury.
Funder
National Natural Science Foundation of China
Innovation Capability Support Program of Shaanxi
Publisher
Springer Science and Business Media LLC