Role of NAT10-mediated ac4C-modified HSP90AA1 RNA acetylation in ER stress-mediated metastasis and lenvatinib resistance in hepatocellular carcinoma

Author:

Pan Zhipeng,Bao Yawei,Hu Mengyao,Zhu Yue,Tan Chaisheng,Fan Lulu,Yu Hanqing,Wang Anqi,Cui Jie,Sun GuopingORCID

Abstract

AbstractEmerging evidence showed that epigenetic regulation plays important role in the pathogenesis of HCC.N4-acetocytidine (ac4C) was an acetylation chemical modification of mRNA, and NAT10 is reported to regulate ac4C modification and enhance endoplasmic reticulum stress (ERS) in tumor metastasis. Here, we report a novel mechanism by which NAT10-mediated mRNA ac4C-modified HSP90AA1 regulates metastasis and tumor resistance in ERS of HCC. Immunohistochemical, bioinformatics analyses, and in vitro and in vivo experiments, e.g., acRIP-Seq, RNA-Seq, and double luciferase reporter experiment, were employed to investigate the effect of NAT10 on metastasis and drug resistance in HCC. The increased expression of NAT10 was associated with HCC risk and poor prognosis. Cell and animal experiments showed that NAT10 enhanced the metastasis ability and apoptosis resistance of HCC cells in ERS and ERS state. NAT10 could upregulate the modification level of HSP90AA1 mRNA ac4C, maintain the stability of HSP90AA1, and upregulate the expression of HSP90AA1, which further promotes the metastasis of ERS hepatoma cells and the resistance to apoptosis of Lenvatinib. This study proposes a novel mechanism by which NAT10-mediated mRNA ac4C modification regulates tumor metastasis. In addition, we demonstrated the regulatory effect of NAT10-HSP90AA1 on metastasis and drug resistance of ERS in HCC cells.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3