Cisplatin remodels the tumor immune microenvironment via the transcription factor EB in ovarian cancer

Author:

Liu Wei,Wang Yanqiu,Xie Yunkai,Dai Tianyu,Fan Mingjun,Li Changzhong,Zou Yonghui

Abstract

AbstractThe mortality rate of ovarian cancer (OC) remains the highest among all gynecological malignancies. Platinum-based chemotherapies are effective in treating most OC cases. However, chemoresistance is still a major challenge for successful OC treatments. Emerging evidence has highlighted that the modulation of the tumor immune microenvironment is involved in chemoresistance, but the mechanism remains unclear. This study aimed to investigate whether resistance to cisplatin (CDDP), the standard treatment for OC, is due to the remodeling of the tumor immune microenvironment by the transcription factor EB (TFEB). We hypothesized that TFEB is not essential for tumor survival but is associated with CDDP resistance. We collected 20 tissue samples of OC patients who had not undergone chemotherapy or radiotherapy prior to surgery. We cultured OC cell lines and performed cell transfection and assays as well as analytical, fluorescence microscopy, and immunohistochemical techniques to explore a novel function of TFEB in remodeling the tumor immune microenvironment in OC. We found a positive correlation between TFEB and programmed cell death-ligand 1 (PD-L1), PD-L2, and HLA-A expression in OC cells and tissues. We also found that CDDP treatment induced TFEB nuclear translocation, thus increasing PD-L1 and PD-L2 expression to foster an immunosuppressive tumor microenvironment, which mediates tumor immune evasion and drug resistance. Interestingly, TFEB also regulated HLA-A expression, which increases the tumor immunogenicity of OC. Finally, in a syngenic murine model of OC, we observed the therapeutic benefit of CDDP plus programmed cell death-1 (PD-1) inhibitor, which enhanced the cytolytic activity of CD8+ T cells and inhibited tumor growth. Our study illustrates the important role of TFEB in regulating the tumor immune microenvironment in OC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3