Clock-modified mesenchymal stromal cells therapy rescues molecular circadian oscillation and age-related bone loss via miR142-3p/Bmal1/YAP signaling axis

Author:

Cha Sa,Wang Jiangyue,Lee Sueng Min,Tan Zhen,Zhao QingORCID,Bai DingORCID

Abstract

AbstractAge-related bone loss and disease strongly affect the quality of life of the elderly population. Cellular circadian rhythms have been reported to regulate bone aging, and micro RNAs (miRNAs) play crucial posttranscriptional regulatory roles in the peripheral clock network. Proliferation capability, osteogenic lineage commitment, senescence-associated secreted phenotype (SASP) and circadian oscillation of clock genes under osteogenic condition were assessed in bone marrow mesenchymal stromal cells (BMSCs) from young adult and aged adult mice. miRNAs targeting the core clock gene brain and muscle arntl-like protein 1 (Bmal1) were screened and verified in young and old BMSCs with RT-qPCR and Western Blot analysis. ChIP-seq and RNA-seq datasets were mined to define the downstream mechanism and gain- and loss-of-function genetic experiments were performed to confirm the hypothesis. To compare the therapeutic effect of these clock-engineered BMSCs, SASP and osteogenic capability of Bmal1-overexpressing and miR-142-3p-inhibited BMSCs were investigated in vitro and transplanted into bone defects and femur cavities of aged mice. Aged BMSCs displayed an abolished circadian rhythm, impaired self-renewal capability and decreased osteoblast differentiation. miR-142-3p was elevated with aging, which downregulated Bmal1 and diminished the osteogenic potential of BMSCs. In addition, Bmal1 inhibited YAP expression to promote BMSCs osteogenesis, which was independent from the activation of Hippo signaling pathway. Overexpression of Bmal1 or inhibition of miR-142-3p rescued the molecular temporal rhythm and osteoblast differentiation ex vivo. Cell-based circadian therapy showed improved bone formation and higher turnover levels in vivo. This study demonstrates that transcriptional and post-transcriptional level clock-modified BMSCs rescued circadian oscillation and age-related bone loss via miR-142-3p/Bmal1/YAP signaling axis. These data provide promising clinical prospects of circadian-mediated stromal cell-based therapy and bone tissue regeneration.

Funder

National Science Foundation of China | Major Research Plan

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3