Epirubicin induces cardiotoxicity through disrupting ATP6V0A2-dependent lysosomal acidification and triggering ferroptosis in cardiomyocytes

Author:

Zhang Mingming,Wu Xin,Wen Yuting,Li Zhiquan,Chen Fuzhong,Zou Yu,Dong Xiaoyu,Liu Xinjian,Wang JunhongORCID

Abstract

AbstractEpirubicin (EPI) is effective in the treatment of malignant cancers, but its application is limited by life-threatening cardiotoxicity. Iron homeostasis disturbance has been implicated in anthracycline induced cardiotoxicity (AIC), and ferroptosis is involved in AIC which dependent upon intracellular iron. However, the role and exact mechanisms of ferroptosis in the pathogenesis of epirubicin-induced cardiotoxicity (EIC) remain elusive. In this study, we aimed to investigate mechanisms underlying ferroptosis-driven EIC. Epirubicin triggered ferroptosis both in vivo and in cultured cardiomyocytes, and pretreatment with ferroptosis inhibitor, Ferrostatin-1(Fer-1) alleviates EIC. Microarray analysis was performed to screen for potential molecules involved in EIC in neonatal primary mouse ventricular cardiomyocytes (NMVMs). We found that the transcript level of ATP6V0A2, a subunit of vacuolar ATPase (V-ATPase), was significantly downregulated when NMVMs were subjected to EPI, which was verified in vivo and in vitro as measured by real time quantitative reverse transcription PCR (qRT-PCR) and immunoblotting. Intriguingly, overexpression of ATP6V0A2 effectively decreased excessive oxidative stress and lipid-peroxidation accumulation, thereby inhibiting ferroptosis and protecting cardiomyocytes against EIC, as evidenced by functional, enzymatic, and morphological changes. Mechanistically, forced expression of ATP6V0A2 restored lysosomal acidification in EPI-treated cardiomyocytes and protected cardiomyocytes and mice hearts from ferroptosis-driven EIC. In this study, our data elucidate that ferroptosis is involved in EIC, which is ignited by ATP6V0A2-dependent lysosomal acidification dysfunction. Our study provides a new potential therapeutic target for ameliorating EIC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3