Curcumol ameliorates neuroinflammation after cerebral ischemia–reperfusion injury via affecting microglial polarization and Treg/Th17 balance through Nrf2/HO-1 and NF-κB signaling

Author:

Liu Ying,Wang Wen,Di Bohan,Miao JiangyongORCID

Abstract

AbstractNeuroinflammation caused by microglia and other immune cells plays pivotal role in cerebral ischemia/reperfusion injury and recovery. Modulating microglial polarization or Treg/Th17 balance from pro-inflammatory phenotype to anti-inflammatory phenotype are promising strategies for the treatment of cerebral ischemia. Curcumol has potential to fight against oxidative stress and inflammation, but whether it has protective effect in cerebral ischemia is uncertain. In the present study, cerebral ischemia was induced in C57BL/6 mice via middle cerebral artery occlusion (MCAO). MCAO mice were treated with curcumol for 7 days, then post-stroke ischemic injury, neurological deficits, microglial polarization and brain leukocyte infiltration were evaluated by TTC staining, behavioural tests, flow cytometry, western blot and immunofluorescence. We found that poststroke administration of curcumol reduced infarct volume, attenuated neuronal damage and inflammation, and improved motor function recovery of MCAO mice. Curcumol skewed microglial polarization toward anti-inflammatory phenotype in MCAO mice in vivo or after oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. In addition, curcumol reduced local T cell infiltration in ischemic brain of MCAO mice and impaired Treg/Th17 balance. Curcumol inhibited ROS production and regulated Nrf2/HO-1 and NF-κB signaling in microglia. Finally, inhibiting Nrf2/HO-1 signaling or activating NF-κB signaling abrogated the influence of curcumol on microglial polarization. In conclusion, curcumol treatment reduced brain damage and neuroinflammation via modulating anti-inflammatory microglial polarization and Treg/Th17 balance through Nrf2/HO-1 and NF-κB signaling. Curcumol might be a promising treatment strategy for stroke patients.

Funder

Key Science and Technology Research Program of Hebei Provincial Health Commission

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3