Abstract
AbstractNeuroinflammation caused by microglia and other immune cells plays pivotal role in cerebral ischemia/reperfusion injury and recovery. Modulating microglial polarization or Treg/Th17 balance from pro-inflammatory phenotype to anti-inflammatory phenotype are promising strategies for the treatment of cerebral ischemia. Curcumol has potential to fight against oxidative stress and inflammation, but whether it has protective effect in cerebral ischemia is uncertain. In the present study, cerebral ischemia was induced in C57BL/6 mice via middle cerebral artery occlusion (MCAO). MCAO mice were treated with curcumol for 7 days, then post-stroke ischemic injury, neurological deficits, microglial polarization and brain leukocyte infiltration were evaluated by TTC staining, behavioural tests, flow cytometry, western blot and immunofluorescence. We found that poststroke administration of curcumol reduced infarct volume, attenuated neuronal damage and inflammation, and improved motor function recovery of MCAO mice. Curcumol skewed microglial polarization toward anti-inflammatory phenotype in MCAO mice in vivo or after oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. In addition, curcumol reduced local T cell infiltration in ischemic brain of MCAO mice and impaired Treg/Th17 balance. Curcumol inhibited ROS production and regulated Nrf2/HO-1 and NF-κB signaling in microglia. Finally, inhibiting Nrf2/HO-1 signaling or activating NF-κB signaling abrogated the influence of curcumol on microglial polarization. In conclusion, curcumol treatment reduced brain damage and neuroinflammation via modulating anti-inflammatory microglial polarization and Treg/Th17 balance through Nrf2/HO-1 and NF-κB signaling. Curcumol might be a promising treatment strategy for stroke patients.
Funder
Key Science and Technology Research Program of Hebei Provincial Health Commission
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献