Coincidence imaging for Jones matrix with a deep-learning approach

Author:

Xi Jiawei,Yung Tsz Kit,Liang Hong,Li Tan,Tam Wing Yim,Li Jensen

Abstract

AbstractCoincidence measurement has become an emerging technique for optical imaging. Based on measuring the second-order coherence g2, sample features such as reflection/transmission amplitude and phase delay can be extracted with developed algorithms pixel-by-pixel. However, an accurate measurement of g2 requires a substantial number of collected photons which becomes difficult under low-light conditions. Here, we propose a deep-learning approach for Jones matrix imaging using photon arrival data directly. A variational autoencoder (β-VAE) is trained using numerical data in an unsupervised manner to obtain a minimal data representation, which can be transformed into an image with little effort. We demonstrate as few as 88 photons collected per pixel on average to extract a Jones matrix image, with accuracy surpassing previous semi-analytic algorithms derived from g2. Our approach not only automates formulating imaging algorithms but can also assess the sufficiency of information from a designed experimental procedure, which can be useful in equipment or algorithm designs for a wide range of imaging applications.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3