Author:
Meng Zan Kui,Shi Yan,Wu Quan Wei,Wei Wen Yue,Hui Ru,Wang Shao Ze,Dai Shi Han,Ma Qian,Cui Tie Jun
Abstract
AbstractIntelligent voice interaction offers a flexible and powerful way to connect individuals with smart devices beyond our expectations. The real-time nature of voice communication enables smart devices to comprehend the user language, execute the corresponding instructions, and facilitate seamless communications, transforming our lives in unprecedented ways. Owing to self-adaptive and reprogrammable functionalities, information metasurface (IMS) opens up a new avenue for smart home and smart cities. To further enhance the intelligence of IMS, we propose an IMS system via intelligent voice interaction and information processing. The voice interaction enables the efficient remote control on the IMS in a flexible, convenient, touchless manner. Leveraging speech recognition, speech synthesis, target detection, and communication technologies, the IMS system achieves automatic beam manipulation capabilities for wireless information transmissions and wireless power transfers. The IMS system is designed to operate in two distinct modes: instruction mode, wherein the user instructs the operations, and autonomous mode, wherein the automatic detections govern the actions, in which seamless mode switching through the voice commands is supported. Users can flexibly achieve precise control over the functions of the intelligent metasurface system through voice interaction at a distance, without the need for close-range manual touch control, which greatly simplifies the operation difficulty and is particularly suitable for remote control and complex application scenarios. A series of experiments, including wireless video transmissions and wireless power transfers are conducted to demonstrate the flexibility and convenience of the IMS system. The incorporation of intelligent voice interaction technology with the IMS presents a novel paradigm for the applications of programmable and information metasurfaces.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
111 Project
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献