In situ formation of graphene/metal oxide composites for high-energy microsupercapacitors

Author:

Jung Jaemin,Jeong Jae Ryeol,Lee Jungjun,Lee Sang Hwa,Kim Soo YoungORCID,Kim Myung Jun,Nah JunghyoORCID,Lee Min HyungORCID

Abstract

AbstractThe current design trends in the field of electronic devices involve efforts to make these devices smaller, thinner, lighter, and more flexible. The development of such systems is expected to further accelerate, resulting in the production of wearable and Internet-of-Things devices. In this respect, microenergy storage systems with high capacity and fast charge/discharge rates have become important power sources for such devices. In particular, interdigitated microsupercapacitors (MSCs) have exhibited remarkable potential as micropower sources owing to their fast charge/discharge processes, long cycle life, and high power density compared with microbatteries. Nevertheless, facile fabrication of MSCs using interdigitated electrodes remains challenging, as it requires selective decoration of electrodes with pseudocapacitive materials, such as transition metal oxides, to increase their capacitance. In the present study, we developed a simple method for fabricating MSCs involving in situ formation of interdigitated graphene electrodes and ZnO nanorods by photothermal conversion of graphene oxide (GO) and Zn precursors using infrared (IR) laser scribing. The fabricated MSCs exhibit a high stack capacitance of 3.90 F cm−3 and an energy density of 0.43 mWh cm−3. Notably, the capacity of the developed material is three times higher than those of previously reported MSCs made from the same type of graphene. In addition, the capacitance retention rate of the fabricated MSC is approximately 70% when measured over 10,000 charging–discharging cycles at a constant current, which evidently indicates a stable device performance.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3