Realizing metallicity in Sr2IrO4 thin films by high-pressure oxygen annealing

Author:

Song Zhen,Zhang You-Shan,Shen Jing-Yi,Lin Bing,Wu JieORCID,Xiang Ping-HuaORCID,Duan Chun-Gang,He Rui-HuaORCID

Abstract

AbstractPerovskite iridates are a promising material platform for hosting unconventional superconductivity. Transport measurements of Sr2IrO4 thin-film field-effect transistors are expected to provide irrefutable evidence for the existence of superconductivity. However, these experiments have revealed a remarkably robust insulating state over wide electron and hole doping ranges; this finding is in contrast to the case of the bulk material, in which metallicity appears upon moderate electron doping by substituting cations in place of Sr. The nature of this robust insulating state and whether any metallic state can be realized in the Sr2IrO4 thin film are two remaining challenges that preclude further progress in the search for superconductivity in this system. Here, we show that this insulating state is enhanced in Sr2IrO4 thin films by thermal annealing under vacuum conditions, while it can be destroyed upon annealing in an oxygen atmosphere within restricted ranges of oxygen pressure, annealing temperature and ion substitution levels. The resulting films exhibit metallic transport behavior near room temperature and a metal–insulator crossover at ~200 K. Our results point to the potentially important roles of the oxygen vacancies at different atomic sites in the formation of the robust insulating state and the new metallic state and to their interplay in the Sr2IrO4 thin film. This finding opens new possibilities in the search for unconventional superconductivity by further tailoring the as-found metallic state in properly oxygen-annealed Sr2IrO4 thin films.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Annealing Effects and Insulator-to-Metal Transition in Nb Doped Sr2IrO4;Journal of Low Temperature Physics;2024-07-08

2. Electron Doping and Enhanced Conductivity in Vacuum Annealed Sr2-xLaxIrO4;Journal of Superconductivity and Novel Magnetism;2024-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3