Nonvolatile voltage-controlled magnetization reversal in a spin-valve multiferroic heterostructure

Author:

Liu Mengli,Du Wei,Su Hua,Zhang Huaiwu,Liu Bo,Meng Hao,Tang XiaoliORCID

Abstract

AbstractPure voltage-controlled magnetism, rather than a spin current or magnetic field, is the goal for next-generation ultralow power consumption spintronic devices. To advance toward this goal, we report a voltage-controlled nonvolatile 90° magnetization rotation and voltage-assisted 180° magnetization reversal in a spin-valve multiferroic heterostructure. Here, a spin valve with a synthetic antiferromagnetic structure was grown on a (110)-cut Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrate, in which only the magnetic moment of the free layer can be manipulated by an electric field (E-field) via the strain-mediated magnetoelectric coupling effect. As a result of selecting a specified PMN-PT substrate with defect dipoles, nonvolatile and stable magnetization switching was achieved by using voltage impulses. Accordingly, a giant, reversible and nonvolatile magnetoresistance modulation was achieved without the assistance of a magnetic field. In addition, by adopting a small voltage impulse, the critical magnetic field required for complete 180° magnetization reversal of the free layer can be tremendously reduced. A magnetoresistance ratio as large as that obtained by a magnetic field or spin current under normal conditions is achieved. These results indicate that E-field-assisted energy-efficient in-plane magnetization switching is a feasible strategy. This work is significant to the development of ultralow-power magnetoresistive memory and spintronic devices.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3