Mechanically resilient integrated electronics realized using interconnected 2D gold-nanosheet elastomeric electrodes

Author:

Heo Seojun,Jeong Seongsik,Kim Kyeong-Hwan,Kim Hae-JinORCID

Abstract

AbstractWith the growing interest in wearable devices in recent decades, considerable effort has been devoted to developing mechanical elastomeric devices such as sensors, transistors, logic circuits, and integrated circuits. To successfully implement elastomeric devices subjected to large mechanical deformations or stretching, all the components, including conductors, semiconductors, and dielectrics, must have high stability and mechanical sustainability. Elastomeric conductors, which exhibit excellent electrical performances under mechanical deformations, are key components of elastomeric devices. Herein, we prepared fully elastomeric electrodes based on interconnected 2D gold nanosheets (AuNSs) to develop mechanically resilient integrated electronics. The AuNS elastomeric electrodes exhibited a sheet resistance of less than 2 Ω/sq under 50% stretching and sustained 100,000 stretching–releasing cycles. These electrodes with a dedicated design were used in combination with elastomeric semiconductors of P3HT nanofibrils in the PDMS elastomer (P3NF/PDMS) and an ion gel as a dielectric to realize elastomeric transistors, inverters, and NOR and NAND logic gates. Additionally, an elastomeric 8 × 8 transistor array that can sustain various types of mechanical stimuli was successfully demonstrated. Furthermore, the elastomeric electronic devices implemented on a soft robot showed no interfering performances during robot gripping motion. The proposed framework is expected to aid in the rapid development and broaden the application scope of soft electronics.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3