Vascularized silk electrospun fiber for promoting oral mucosa regeneration

Author:

Qian Chunyu,Xin Tianwen,Xiao Wanshu,Zhu Huajun,Zhang Qiang,Liu Lili,Cheng Ruoyu,Wang Zhen,Cui WenguoORCID,Ge Zili

Abstract

AbstractElectrospun fiber membranes have been extensively researched for tissue repair; however, fiber angiogenesis has been a difficult problem because the biomaterials used to prepare the fiber cannot promote angiogenesis by themselves. To endow the fiber with the function of promoting angiogenesis and oral mucosa regeneration, surface-aminated liposomes (NH2-LIPs) encapsulating leptin, as well as silk fiber (SF) membranes that have been immersed overnight in polydopamine (PDA) solution were synthesized. The NH2-LIPs were then grafted onto the surfaces of SF through reactions between the catechol groups of PDA and the amino groups of NH2-LIPs to induce angiogenesis on the fiber surface and thus promote oral mucosa regeneration. The PDA-modified and NH2-LIP-modified SF retained the original fibrous morphology but increased the SF tensile strength from 1.95 MPa to 2.87 MPa. PDA changed the hydrophilicity of the fibers and improved the adhesion of fibroblasts on the fibrous membranes. Leptin loaded onto SF via PDA had no significant effect on cell proliferation and formed 162.7-node tubes in human umbilical vein endothelial cells (HUVECs) within 10 h, which demonstrated that leptin loaded onto SF can promote angiogenesis. Wound closure of mucosa covered in leptin-loaded fibrous membranes reached 99% at 14 days postsurgery. Histologic analysis showed that leptin-loaded SFs exhibited clear stratification of new mucosa, as well as a strong CD34 signal that indicated the presence of new blood vessels and confirmed the successful loading of leptin on the fiber. Therefore, this work successfully showed that NH2-LIPs grafted onto the surface of SFs via PDA endow the fibers with angiogenic abilities and promote oral mucosa regeneration.

Funder

Foundation of Shanghai Municipal Commission of Health and Family Planning

Shanghai Municipal Education Commission

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3