Abstract
AbstractInterfacial perpendicular magnetic anisotropy, which is characterized by first-order (K1) and second-order (K2) anisotropy, is the core phenomenon for nonvolatile magnetic devices. A sizable K2 satisfying a specific condition stabilizes the easy-cone state, where equilibrium magnetization forms at an angle from the film normal. The easy-cone state offers intriguing possibilities for advanced spintronic devices and unique spin textures, such as spin superfluids and easy-cone domain walls. Experimental realization of the easy-cone state requires understanding the origin of K2, thereby enhancing K2. However, the previously proposed origins of K2 cannot fully account for the experimental results. Here, we experimentally show that K2 scales almost linearly with the work function difference between the Co and X layers in Pt/Co/X heterostructures (X = Pd, Cu, Pt, Mo, Ru, W, and Ta), suggesting the central role of the inversion asymmetry in K2. Our result provides a guideline for enhancing K2 and realizing magnetic applications based on the easy-cone state.
Funder
National Research Foundation of Korea
Korea Institute of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献