Abstract
AbstractEmerging from competing exchange interactions, the helimagnetic order describes a noncollinear spin texture of antiferromagnets. Although collinear antiferromagnets act as the elemental building blocks of antiferromagnetic (AFM) spintronics, until now, the potential of implementing spintronic functionality in noncollinear antiferromagnets has not been clarified. Here, we propose an AFM helimagnet of EuCo2As2 as a novel single-phase spintronic material that exhibits a remarkable sign reversal of anisotropic magnetoresistance (AMR). The contrast in the AMR arises from two electrically distinctive magnetic phases with spin reorientation that is driven by the magnetic field prevailing in the easy plane, which converts the AMR from positive to negative. Furthermore, based on an easy-plane anisotropic spin model, we theoretically identified various AFM memory states associated with the evolution of the spin structure under magnetic fields. The results revealed the potential of noncollinear antiferromagnets for application in the development of spintronic devices.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献