Abstract
AbstractEngineering scaffolds to augment the repair of hard-to-soft multitissue musculoskeletal tissue units, such as bone-tendon, to simultaneously support tissue healing and functional movement has had limited success. Overcoming this challenge will require not only precise spatial control of bone- and tendon-like biomechanical properties, but also consideration of the resultant biomechanical cues, as well as the embedded biochemical cues imparted by these scaffolds. Here, we report on the effects of a spatially engineered combination of stiffness and growth factor (GF) cues to control bone-tendon-like differentiation in vitro and tissue formation in vivo. This was achieved using mechanically graded, bone- and tendon-like QHM polyurethane (QHM: Q: Quadrol; H: hexamethylene diisocyanate; M: methacrylic anhydride) scaffolds selectively biopatterned with osteogenic bone morphogenetic protein-2 (BMP-2) and tenogenic fibroblast growth factor-2 (FGF-2). First, material characterization, including porosity, surface roughness, contact angle, and microindentation measurements, was performed. Second, in vitro studies demonstrated that increased material stiffness promoted GF-mediated osteoblast differentiation and reduced tenocyte differentiation. Sustained GF exposure masked this stiffness effect. Third, in vivo studies involving subcutaneous implantation of mechanically graded and biochemically patterned QHM scaffolds (composed of these bone- and tendon-promoting GFs biopatterned on biphasic bone and tendon biomechanically mimicking regions) in mice demonstrated spatial control of bone- and tendon-like tissue formation. Altogether, these data provide new insights for future engineering of scaffolds to augment hard-to-soft multitissue repair.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献