Role of the structure order in the transport and magnetic properties of high-entropy alloy films

Author:

Chen Jia-Wei,Chen Shih-Hsun,Shafer PadraicORCID,Tzeng Wen-Yen,Chen Yi-Cheng,Luo Chih-WeiORCID,Wu Wen-Wei,Yeh Jien-Wei,Chu Ying-HaoORCID

Abstract

AbstractThe fabrication and development of high-entropy alloys (HEAs) with exceptional functionalities is a rapidly expanding field with numerous applications. When the role of entropy in HEAs is considered, the extrinsic factors, such as the existence of grains and different phases, need to be separated from the intrinsic configurations of the atomic lattice. Here, we fabricated the CoCrFeNi2Al0.5 HEA/muscovite heterostructures, and some were prepared as epitaxial bilayers and others were prepared as an amorphous system. These two systems are classified into atomic-site disordered (ASD) and structurally disordered (SD) states, respectively, without the extrinsic effects for the determination of the crystal lattice role in high-entropy states. In this study, we determined the role of the structure order in correlation with the structural, electronic, and magnetic properties of HEAs using a combination of energy-dispersive X-ray spectrometry, X-ray diffraction, transmission electron microscopy, magneto-transport, ac magnetometry, and X-ray absorption spectroscopy with magnetic circular dichroism. The ASD state showed fully metallic behavior. In contrast, the SD state showed a metallic behavior with intense magnetic saturation, which was called Kondo-like behavior, under 50 K with a low-temperature coefficient of resistivity of ~64 ppm/°C. The difference between the saturation magnetic moment and the electron relaxation behavior in the ASD and SD states resulted from the existence of the structural order affecting the atomic distance and periodicity to modify the exchange interaction and tune the electron-phonon interaction for scattering. The ferromagnetic behavior contributed by Co, Fe, and Ni atoms was probed by X-ray absorption and magnetic circular dichroism to understand the magnetic interactions in the ASD and SD states.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3