Organic piezoelectric materials: milestones and potential

Author:

Guerin Sarah,Tofail Syed A. M.,Thompson Damien

Abstract

AbstractResearch on the piezoelectric response of biomolecules has intensified following demonstration of open circuit voltages of over 20 V in biopiezoelectric generators. Organic piezoelectric nanotubes, fibers, and micro-islands have been grown and studied; however, the lack of fundamental understanding of the piezoelectric effect in nature hinders the rational design of biomaterials to provide a tailor-made piezoelectric response. Advances in high performance computing have facilitated the use of quantum mechanical calculations to predict the full piezoelectric tensor of biomolecular crystals, including amino acids and small peptides. By identifying directions of high piezoelectric response, the simulations can guide experimental crystal growth, device fabrication and electrical testing, which have led to the demonstration of unprecedented piezoelectric responses in organic crystals on the order of 200 pC/N. These large responses arise from strong supramolecular dipoles, which can be tuned by molecular chemistry and packing, opening new opportunities for the realization of technologically useful piezoelectric devices from renewable materials. The amino acids predicted to exhibit the highest piezoelectric response, such as glycine, hydroxyproline and lysine, are anticipated to be used to engineer highly piezoelectric peptides in the future. With improved scaling of advanced computational methods, such as density functional perturbation theory, the research community can begin to efficiently screen peptide structures for enhanced electromechanical properties. This capability will accelerate the experimental development of devices and provide much-needed insight into the evolution of a hierarchical relation in biological materials starting from strongly piezoelectric building blocks.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3