Tardigrade-inspired extremotolerant glycerogels

Author:

Mredha Md. Tariful IslamORCID,Lee Yoonseong,Rama Varma Adith Varma,Gupta Tanish,Manimel Wadu Rumesh Rangana,Jeon InsuORCID

Abstract

AbstractWe developed extremotolerant glycerogels (GGs) with well-modulated polymer structures, functions, and properties, inspired by the tun formation of tardigrades. GGs comprising extreme protected intra- and intermolecular networks are obtained through a very slow structure building process, which includes the smooth replacement of water in predesigned hydrogels with glycerol and thermal annealing while retaining the structures and functions of the original hydrogels. Four different GGs are fabricated as proofs-of-concept using different crosslinkers and polymers. Although various polyol-based wide-temperature-tolerant gels fabricated by conventional methods fail to demonstrate stabilities at low and high temperature extremes simultaneously, the GGs fabricated by our bioinspired method exhibit long-term stability (approaching one month) over an extremely wide temperature range (−50–80 °C) and thermal-shock-absorption capabilities at 150 °C. Furthermore, our versatile method enables us to program GGs with wide ranges of stiffness, strength, stretchability, and toughness values and elasticity, plasticity, hysteresis, and self-recoverability capabilities. The self-weldability, electrical patternability, and applicability characteristics of the GGs as electrolytes and supercapacitors demonstrate their complex 3D designability and facile functionalization capability aspects. The various functional GGs developed through the proposed method are applicable for the design of diverse extremotolerant, flexible, and stretchable devices for biological, electrical/electronic, and soft robotics applications.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3