Integrated neuromorphic computing networks by artificial spin synapses and spin neurons

Author:

Yang SeungmoORCID,Shin Jeonghun,Kim TaeyoonORCID,Moon Kyoung-WoongORCID,Kim Jaewook,Jang Gabriel,Hyeon Da Seul,Yang Jungyup,Hwang ChanyongORCID,Jeong YeonJooORCID,Hong Jin PyoORCID

Abstract

AbstractOne long-standing goal in the emerging neuromorphic field is to create a reliable neural network hardware implementation that has low energy consumption, while providing massively parallel computation. Although diverse oxide-based devices have made significant progress as artificial synaptic and neuronal components, these devices still need further optimization regarding linearity, symmetry, and stability. Here, we present a proof-of-concept experiment for integrated neuromorphic computing networks by utilizing spintronics-based synapse (spin-S) and neuron (spin-N) devices, along with linear and symmetric weight responses for spin-S using a stripe domain and activation functions for spin-N. An integrated neural network of electrically connected spin-S and spin-N successfully proves the integration function for a simple pattern classification task. We simulate a spin-N network using the extracted device characteristics and demonstrate a high classification accuracy (over 93%) for the spin-S and spin-N optimization without the assistance of additional software or circuits required in previous reports. These experimental studies provide a new path toward establishing more compact and efficient neural network systems with optimized multifunctional spintronic devices.

Funder

National Research Foundation of Korea

Korea Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Reference42 articles.

1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

2. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

3. Nurvitadhi, E. et al. Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays 5 (Monterey, California, USA, 2017).

4. Raihan, M. A., Goli, N. & Aamodt, T. M. 2019 IEEE International Symposium on Performance Analysis of Systems and Software 79–92 (ISPASS, Madison, Wisconsin, 2019).

5. Jouppi, N. P. et al. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture 1–12 (ISCA, Toronto, ON).

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3