Author:
Gennari O.,Rega R.,Mugnano M.,Oleandro E.,Mecozzi L.,Pagliarulo V.,Mazzon E.,Bramanti A.,Vettoliere A.,Granata C.,Ferraro P.,Grilli S.
Abstract
AbstractThe unique deformability and the compliance ability of thin sheets on soft substrates attract much interest for studying the phenomena related to elastic instabilities as well as for sensing very weak forces such as those generated by live cells in vitro. However, the techniques used currently for producing such platforms are affected by a high degree of complexity and poor repeatability. Moreover, their deformability is usually used as a passive response to the action of an external force. Herein we propose a novel concept for a reliable and dynamic skin-over-liquid system made of a periodic array of highly compliant microbumps actuated through electrode-free electrohydrodynamic (EHD) pressure. We demonstrate that these structures are highly repeatable and capable of swelling and deflating easily under a simple thermal stimulation driven by the pyroelectric effect, thus providing a challenging platform that can be actively controlled at the microscale. Furthermore, we show the proof of principle by swelling these microbumps for mechanically stimulating live cells in vitro, thus opening the route to more reliable and easy to accomplish assays in the field of mechanobiology.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献