Normal-to-topological insulator martensitic phase transition in group-IV monochalcogenides driven by light

Author:

Zhou JianORCID,Zhang Shunhong,Li JuORCID

Abstract

AbstractA material potentially exhibiting multiple crystalline phases with distinct optoelectronic properties can serve as a phase-change memory material. The sensitivity and kinetics can be enhanced when the two competing phases have large electronic structure contrast and the phase change process is diffusionless and martensitic. In this work, we theoretically and computationally illustrate that such a phase transition could occur in the group-IV monochalcogenide SnSe compound, which can exist in the quantum topologically trivial Pnma-SnSe and nontrivial $$Fm\bar 3m$$ F m 3 ¯ m -SnSe phases. Furthermore, owing to the electronic band structure differences of these phases, a large contrast in the optical responses in the THz region is revealed. According to the thermodynamic theory for a driven dielectric medium, optomechanical control to trigger a topological phase transition using a linearly polarized laser with selected frequency, power and pulse duration is proposed. We further estimate the critical optical electric field to drive a barrierless transition that can occur on the picosecond timescale. This light actuation strategy does not require fabrication of mechanical contacts or electrical leads and only requires transparency. We predict that an optically driven phase transition accompanied by a large entropy difference can be used in an “optocaloric” cooling device.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3