Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing

Author:

Wang Zhen,Dong Xuezhe,Zhou Shuyun,Xie Zheng,Zalevsky ZeevORCID

Abstract

AbstractNarrow-bandwidth luminescent materials are already used in optoelectronic devices, superresolution, lasers, imaging, and sensing. The new-generation carbon fluorescence nanomaterials—carbon dots—have attracted considerable attention due to their advantages, such as simple operation, environmental friendliness, and good photoelectric performance. In this work, two narrower-bandwidth (21 and 30 nm) emission graphene quantum dots with long-wavelength fluorescence were successfully prepared by a one-step method, and their photoluminescence (PL) peaks were at 683 and 667 nm, respectively. These red-emitting graphene quantum dots were characterized by excitation wavelength dependence of the fluorescence lifetimes, and they were successfully applied to spectral and spatial superresolved sensing. Here, we proposed to develop an infrared spectroscopic sensing configuration based on two narrow-bandwidth-emission graphene quantum dots. The advantage of the method used is that spectroscopic information was extracted without using a spectrometer, and two narrow-bandwidth-emission graphene quantum dots were simultaneously excited to achieve spatial separation through the unique temporal “signatures” of the two types of graphene quantum dots. The spatial separation localization errors of the graphene quantum dots (GQDs-Sn and GQDs-OH) were 1 pixel (10 nm) and 3 pixels (30 nm), respectively. The method could also be adjusted for nanoscope-related applications in which spatial superresolved sensing was achieved.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3