Unveiling the origin of the large coercivity in (Nd, Dy)-Fe-B sintered magnets

Author:

Tang XinORCID,Li Jiangnan,Sepehri-Amin HosseinORCID,Bolyachkin Anton,Martin-Cid Andres,Kobayashi Shintaro,Kotani Yoshinori,Suzuki MotohiroORCID,Terasawa Asako,Gohda YoshihiroORCID,Ohkubo TadakatsuORCID,Nakamura Tetsuya,Hono Kazuhiro

Abstract

AbstractNd-Fe-B-based permanent magnets are widely used for energy conversion applications. However, their usage at elevated temperatures is difficult due to the relatively low coercivity (Hc) with respect to the anisotropy field (HA) of the Nd2Fe14B compound, which is typically 0.2HA. In this work, we found that the coercivity of an (Nd0.8Dy0.2)-Fe-B sintered magnet could reach 0.4HA, which was twice as high as the Hc/HA of its Dy-free counterpart. Detailed microstructural characterizations, density functional theory and micromagnetic simulations showed that the large value of coercivity, Hc = 0.4HA, originated not only from the enhanced HA of the main phase (intrinsic factor) but also from the reduced magnetization of the thin intergranular phase (extrinsic factor). The latter was attributed to the dissolution of 4 at.% Dy in the intergranular phase that anti-ferromagnetically coupled with Fe. The reduction in the magnetization of the intergranular phase resulted in a change in the angular dependence of coercivity from the Kondorsky type for the Dy-free magnet to the Stoner–Wohlfarth-like shape for the Dy-containing magnet, indicating that the typical pinning-controlled coercivity mechanism began to show nucleation features as the magnetization of the intergranular phase was reduced by Dy substitution.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dy6Fe13Cu grain boundary restructured Nd-Fe-B permanent magnets;Journal of Magnetism and Magnetic Materials;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3