Highly porous and injectable hydrogels derived from cartilage acellularized matrix exhibit reduction and NIR light dual-responsive drug release properties for application in antitumor therapy

Author:

Gulfam Muhammad,Jo Sung-Han,Jo Sung-Woo,Vu Trung Thang,Park Sang-HyugORCID,Lim Kwon TaekORCID

Abstract

AbstractIn this work, we developed novel stimuli-responsive injectable hydrogels composed of a highly biocompatible cartilage acellularized matrix (CAM) and a water-soluble cross-linker containing a diselenide bridge by using ultrafast norbornene (Nb)-tetrazine (Tz) click chemistry. The cross-linking reaction between the Nb groups of the CAM and Tz groups of the cross-linker evolved nitrogen gas and resulted in injectable hydrogels with highly porous structures. The synthesized hydrogels demonstrated high drug loading efficiencies (up to 93%), good swelling ratios, and useful mechanical properties. The doxorubicin (DOX)-loaded hydrogels released minimal amounts of DOX in the simulated physiological medium; however, sustained release of DOX was detected under reducing conditions, revealing more than 90% DOX release after 96 h. Interestingly, the indocyanine green (ICG)-incorporated hydrogels produced reactive oxygen species upon exposure to NIR light and exhibited burst release (>50% DOX release) of DOX during the first 4 h, followed by a sustained release phase. In vitro cytocompatibility tests showed that the synthesized CAM-Nb and hydrogels are essentially nontoxic to HFF-1 fibroblast cells and human colorectal adenocarcinoma cells (HT-29), indicating their excellent bioorthogonality and biocompatibility. Furthermore, DOX-loaded and DOX + ICG-loaded hydrogels inhibited the metabolic activities of HT-29 cells after GSH or NIR exposure and induced antitumor effects similar to those of free DOX. Therefore, these biocompatible and reduction-responsive injectable hydrogels, which exhibited on-demand drug release after NIR exposure, could be promising candidates for minimally invasive local delivery of cancer therapeutics.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3