An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration

Author:

Sun Ao,He Xinye,Li Lang,Li Tao,Liu Qinya,Zhou Xinli,Ji Xiao,Li Wei,Qian Zhiyong

Abstract

Abstract Currently, wound infection is an important health problem for the public. Wound infection can not only hinder healing but it can also lead to serious complications. Injectable wound dressings with biocompatible and antibacterial properties can promote wound healing during skin infections and reduce antibiotic use. Here, we used glycidyl methacrylate (GMA) to modify ε-polylysine (ε-PL) and γ-poly(glutamic acid) (γ-PGA) to produce ε-polylysine-glycidyl methacrylate (ε-PL-GMA) and γ-poly(glutamic acid)-glycidyl methacrylate (γ-PGA-GMA). Subsequently, ε-PL-GMA- and γ-PGA-GMA-based hydrogels were developed through photopolymerization using visible light. The hydrogels were injectable, could rapidly gelatinize, were biocompatible, and showed a wide spectrum of antibacterial activity. The hydrogels also promoted wound healing. The results show that these hydrogels inhibit bacterial infection and shorten the wound healing time of skin defects in Staphylococcus aureus models. This demonstrates that the hydrogels hold potential for clinical antimicrobial and wound healing therapy.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3