Abstract
AbstractNonferric oxidant precursors have the unique advantage of directly polymerizing poly(3,4-ethylenedioxythiophene) (PEDOT)-inorganic composites. However, due to limited solubility and unmatched oxidation potentials, most oxidants only produce powders or porous materials. To obtain high-quality films with improved homogeneity and controllable particle sizes, the oxidants should be adaptable to high-standard PEDOT film fabrication techniques such as vapor phase polymerization (VPP). In this work, we discovered for the first time a nonferric metal salt suitable for the VPP process. With the addition of an Fe(III) salt to stabilize the reaction and adjust the oxidant ratio, micron-thick antibacterial S-PEDOT-Ag quantum dot (QD) composite films with tunable Ag wt% can be synthesized in one facile step. With a low Ag loading of ~0.2 wt%, the film exhibited an optimized power factor of 63.1 μW/mK2, which is among the highest values thus far reported for PEDOT-metal composites. Increase of the Ag(I) concentration in the precursor to a certain level may lead to minor decomposition of the polymer followed by the formation of Ag2S particles.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献